Constrained self-organizing feature map to preserve feature extraction topology
نویسندگان
چکیده
منابع مشابه
Performance evaluation of the self-organizing map for feature extraction
[1] Despite its wide applications as a tool for feature extraction, the Self-Organizing Map (SOM) remains a black box to most meteorologists and oceanographers. This paper evaluates the feature extraction performance of the SOM by using artificial data representative of known patterns. The SOM is shown to extract the patterns of a linear progressive sine wave. Sensitivity studies are performed ...
متن کاملFast self-organizing feature map algorithm
We present an efficient approach to forming feature maps. The method involves three stages. In the first stage, we use the K-means algorithm to select N2 (i.e., the size of the feature map to be formed) cluster centers from a data set. Then a heuristic assignment strategy is employed to organize the N2 selected data points into an N x N neural array so as to form an initial feature map. If the ...
متن کاملSelf-organizing Neural Networks in Feature Extraction
Due to large datavolumes when remote sensing or other kind of images are used, there is need for methods to decrease the volume of data. Methods for decreasing the feature dimension, in other words number of channels, are called feature selection and feature extraction. In the feature selection, important channels are selected using some search technique and these channels are used for current ...
متن کاملAutonomous Perceptual Feature Extraction in a Topology-Constrained Architecture
In this paper, it is shown that the Feature-Extracting Bidirectional Associative Memory (FEBAM) can encompass competitive model features based on winner-take-all, kwinners-take-all and self-organizing feature map properties. The modified model achieves perceptual multidimensional feature extraction, cluster-based category formation through simultaneous creation of prototype/exemplar memories, a...
متن کاملMulti-layer kohonen self-organizing feature map for language identification
In this paper we describe a novel use of a multi-layer Kohonen self-organizing feature map (MLKSFM) for spoken language identification (LID). A normalized, segment-based input feature vector is used in order to maintain the temporal information of speech signal. The LID is performed by using different system configurations of the MLKSFM. Compared with a baseline PPRLM system, our novel system i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2016
ISSN: 0941-0643,1433-3058
DOI: 10.1007/s00521-016-2346-0